The Development of Lexical Resources for Information Extraction from Text Combining WordNet and Dewey Decimal Classification

نویسنده

  • Gabriela Cavaglia
چکیده

Lexicon definition is one of the main bottlenecks in the development of new applications in the field of Information Extraction from text. Generic resources (e.g., lexical databases) are promising for reducing the cost of specific lexica definition, but they introduce lexical ambiguity. This paper proposes a methodology for building application-specific lexica by using WordNet. Lexical ambiguity is kept under control by marking synsets in WordNet with field labels taken from the Dewey Decimal Classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Construction of Persian ICT WordNet using Princeton WordNet

WordNet is a large lexical database of English language, in which, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets). Each synset expresses a distinct concept. Synsets are interlinked by both semantic and lexical relations. WordNet is essentially used for word sense disambiguation, information retrieval, and text translation. In this paper, we propose s...

متن کامل

A Semantic Method to Information Extraction for Decision Support Systems

In this paper, we describe a novel schema for a more semantic text mining process which results in more comprehensive decision making activity by decision support systems via providing more effective and accurate textual information. The utility of two semantic lexical resources; FrameNet and WordNet, in extracting required text snippets from unstructured free texts yields a better and more acc...

متن کامل

Semantic Extraction with Wide-Coverage Lexical Resources

We report on results of combining graphical modeling techniques with Information Extraction resources (Pattern Dictionary and Lexicon) for both frame and semantic role assignment. Our approach demonstrates the use of two human built knowledge bases (WordNet and FrameNet) for the task of semantic extraction.

متن کامل

Extracting Lexico-conceptual Knowledge for Developing Persian WordNet

Semantic lexicons and lexical ontologies are some major resources in natural language processing. Developing such resources are time consuming tasks for which some automatic methods are proposed. This paper describes some methods used in semi-automatic development of FarsNet; a lexical ontology for the Persian language. FarsNet includes the Persian WordNet with more than 10000 synsets of nouns,...

متن کامل

Generating Training Data for Semantic Role Labeling based on Label Transfer from Linked Lexical Resources

We present a new approach for generating role-labeled training data using Linked Lexical Resources, i.e., integrated lexical resources that combine several resources (e.g., WordNet, FrameNet, Wiktionary) by linking them on the sense or on the role level. Unlike resource-based supervision in relation extraction, we focus on complex linguistic annotations, more specifically FrameNet senses and ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999